Slide 1	So far	_	
	Biology is the study of life		
	- All life is based on the cell		
	- The Earth, organisms, cells are all aqueous	_	· · · · · · · · · · · · · · · · · · ·
	2. Water's uniqueness stems from its internal polarity		
	- Solvent, Co/Adhesion, Temperature regulation, Insulation		
	- Spontaneous dissociation allows for pH changes and buffering	_	
	The chemistry of life is tetravalent carbon-based		
	- Four covalent bonds allows simple to very complex molecules	_	
	- Several key reactive groups found in biological carbon mols.	_	
	Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamis Cummings]	
		_	
		_	
		_	
Slide 2	Structure and Function of Large Biological Molecules]	
		_	
	All living things are primarily made up of four classes of Macromolecules		
		_	
		-	
	Molecular structure and function are inseparable	-	·····
	Copyright © 2008 Pouron Education, Inc., publishing as Prarvon Benjamis Cammings		
	сорущие эле тыков пасыво, не., регенција и тыков порави сантице	4	
		_	
		_	
		_	
Slide 3	Most Macromolecules are polymers, built from	1	
Silde S	monomers	-	
	A polymer is a long molecule consisting of		
	many similar building blocks	_	
	These small building-block molecules are		
	called monomers		
	Three of the four classes of life's organic molecules are polymers:	_	
	- Carbohydrates		
	- Proteins	-	
	Nucleic acids		
	Ceppright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings	ı	
		_	
		_	
		_	

The Synthesis and Breakdown of Polymers A condensation reaction or more specifically a dehydration reaction occurs when two monomers bond together through the loss of a water molecule The condensation reaction of the specific and the polymers of the po

Slide 5

Slide 6

The Diversity of Polymers

- Each cell has thousands of different kinds of macromolecules
- Macromolecules vary among cells of an organism, vary more within a species, and vary even more between species
- An immense variety of polymers can be built from a small set of monomers

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummin

Carbohydrates serve as fuel and building material

- Monosaccharides
- Disaccharides
- Oligosaccharides
- Polysaccharides

Opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 8

Sugars

- Monosaccharides have molecular formulas that are usually multiples of CH₂O
- Glucose (C₆H₁₂O₆) is the most common monosaccharide
- · Monosaccharides are classified by
 - The location of the carbonyl group (as aldose or ketose)
 - The number of carbons in the carbon skeleton

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

	Trioses (C ₃ H ₆ O ₃)	Pentoses (C ₅ H ₁₀ O ₅)	Hexoses (C ₆ H ₁₂	(₂ O ₂)
Aldoses	H C OH H C OH	H C OH H C OH H C OH H C OH Ribose		H C OH HO C H HO C H H C OH H C OH H Galactose
Ketoses	H G OH G OH H G OH H Dihydroxyacetone	H H C OH C H C OH H C OH H C OH H Ribulose	H H - C - O HO - C - H H - C - O H - C - O H - C - O H - C - O H - C - O	usually are ring structur in cells

Slide 11

Slide 12

Polysaccharides

- Energy storage vs. structural role
- Structure and function determined by:
 - types of sugar monomers
 - positions of glycosidic linkages

oyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Polysaccharides

- Example: 3 glucose polysaccharides
 - Glycogen: Animal Energy Storage
 - Starch: Plant Storage, Animal Source
 - Cellulose: Plant Structure, Not a Source

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 14

Slide 17

- Enzymes that digest starch by hydrolyzing α linkages can't hydrolyze β linkages in cellulose
- Cellulose in human food passes through the digestive tract as insoluble fiber
- Some microbes use enzymes to digest cellulose
- Many herbivores, from cows to termites, have symbiotic relationships with these microbes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide	19

Biological Lipids

- Lipids do not form polymers
- Hydrophobicity arises from nonpolar covalent hydrocarbons in the presence of a polar solvent
- Some lipids separate from water because water molecules form hydrogen bonds with each other and exclude them
- The most biologically important lipids are fats, phospholipids, and steroids

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 20

- The major function of fats is?
- What are adipose cells?

pyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 21

Fats

- Fats are constructed from two types of smaller molecules: glycerol and fatty acids
- Glycerol is a three-carbon alcohol with a hydroxyl group attached to each carbon
- A fatty acid consists of a carboxyl group attached to a long carbon skeleton

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 22

Slide 25

Slide 27

Protein: "Of first importance......" Proteins account for more than 50% of the dry mass of most cells What are some of the functions of proteins?

Slide 28

Protein Monomers and Polymers

- Protein monomers are
- Monomers are linked by ___
- The polymers are _
- The order of monomers is the polymer's

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 32

Protein Monomers and Polymers

- How many amino acids do we use? _
- What key functional groups do they have?
- · They differ due to _
- A protein consists of how many polypeptides?
- What are the polypeptides called when there is more than one?

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 34

Slide 38

Four Levels of Protein Structure The primary structure of a protein is Secondary structure consists of Tertiary structure is Quaternary structure is Cuprodit C 200 Powers Bloodies, Inc., publishing as Power Bloopin

Slide 41

			_

Slide 44

$What \, Determines \, Protein \, Structure?$

- In addition to primary structure, physical and chemical conditions can affect structure
- Alterations in pH, salt concentration, temperature, or other environmental factors can cause a protein to unravel
- This loss of a protein's native structure is called denaturation
- A denatured protein is biologically inactive

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Sickle-Cell Disease: A Change in Primary Structure

- A slight change in primary structure can affect a protein's structure and ability to function
- Sickle-cell disease, an inherited blood disorder, results from a single amino acid substitution in the protein hemoglobin

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 47

Slide 48

The primary amino acid sequence of a polypeptide is the source of its structure and function but what is the source of that sequence?

 	 	_
 		 _

Nucleic Acids What are the two types of nucleic acids? What is replication? What is transcription? What are ribosomes?

Slide 50

-		

Slide 53

The Structure of Nucleic Acids

- What are the nucleic acids monomers called?
- What are the nucleic acid polymers called?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 56

What DNA bases can pair up?	
and	
and	

Slide 58			
	What DNA and RNA bases can pair up?		
	DNA RNA		
	and		
	and		
Slide 59	DNA and Proteins as Tape Measures of Evolution		
Shac 33			
	The linear sequences of nucleotides in DNA		
	molecules are passed from parents to offspring		
	Two closely related species are more similar in		
	DNA than are more distantly related species		
	Molecular biology can be used to assess		
	evolutionary kinship		
	Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings		
		İ	
Slide 60	What have we learned so far?		
	The Melecules of Life		
	The Molecules of Life		
	1. List the four major classes of macromolecules.		
	 2. Distinguish between monomers and polymers. 		
	3. Draw diagrams to illustrate condensation		
	and hydrolysis reactions.		
	Copyright © 2008 Porrom Etheration, Inc., publishing an Pearson Basjamin Cummings	I	

What have we learned so far?

Carbohydrates Serve as Fuel and Building

- 1. Distinguish between monosaccharides, disaccharides, and polysaccharides.
- 2. Describe the formation of a glycosidic linkage.
- 3. Compare and contrast the structures, functions, and locations of starch, glycogen, cellulose and chitin.

Opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 62

What have we learned so far?

- Lipids are a Diverse Group of Hydrophobic Molecules
- 1. Describe the building-block molecules, structure, and biological importance of fats, phospholipids, and steroids. Discuss the primary functions of each type of lipid.
- · 2. Identify an ester linkage and describe how it is formed.
- · 3. Distinguish between saturated and unsaturated fats.
- 4. Describe the process that results in the production of *trans* fat molecules.
- 5. Discuss the role of saturated fats and trans fats in the potential development of atherosclerosis.

opyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Slide 63

What have we learned so far?

Proteins have Many Structures, Resulting in a Wide Range of Functions

- 1. Distinguish between a protein and a polypeptide.
- 2. Explain how a peptide bond forms between two amino acids.
- 3. Name the two ends of a protein and explain the reason for their names.
- 4. List and describe the four major components of an amino acid. Explain how amino acids may be grouped according to the physical and chemical properties of the R group.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Slide 64	What have we learned so far?	
	Explain what determines protein structure and why it is important.	
	6. Explain how the primary structure of a protein is determined.	
	7. Name two types of secondary protein structure. Explain the role of hydrogen bonds in maintaining secondary structure. 22. Explain how weak interactions and disulfide bridges contribute to tertiary protein structure.	
	S. List three conditions under which proteins may be denatured.	
	Explain how chaperonins may assist in proper folding of proteins.	
	Explain how a single nucleotide change in the beta-globin gene can lead to sickle cell anemia disease.	
	Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings	
Slide 65	What have we learned so far?	
	Nucleic Acids Store and Transmit Hereditary Information 1. List the major components of a nucleotide, and describe how	
	these monomers are linked to form a nucleic acid. Name the type of bond that holds two nucleotides together.	
	Distinguish between: a. pyrimidine and purine	
	b. nucleotide and nucleoside	
	c. ribose and deoxyribose d. 5' end and 3' end of a nucleotide	
	Briefly describe the three-dimensional structure of DNA.	
	Cepright C 200 Person Education, Inc., publishing as Person Resignas Camming	
Slide 66	What have we learned so far?	
	Compare and contrast DNA and RNA.	
	Sompare and contrast blv4 and NV4. Explain how DNA or protein comparisons may allow us to	
	assess evolutionary relationships between species.	

6. Briefly discuss the flow of genetic information (from DNA to RNA to protein).

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings